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OPTICAL ILLUSION IMAGES 
DATASET

Abstract: Human vision is capable of performing many tasks not optimized 
for during its long evolution. Reading text and identifying artificial objects 
such as road signs are both tasks that mammalian brains never encountered 
in the wild but are very easy for us to perform. However, humans have 
discovered many very specific tricks or illusions that cause us to misjudge 
the color, size, alignment, and movement of what we are looking at. A better 
understanding of these phenomenon could reveal insights into how human 
perception achieves these extraordinary feats. In this paper we present a 
dataset of 6,725 illusion images gathered from two websites, and a smaller 
dataset of 500 hand-picked images. We will discuss the process of collecting 
this data, models trained on the data, and the work that needs to be done to 
make this information of value to computer vision researchers.

Keywords: Computer Vision, Optical Illusions, Human Vision, Machine 
Learning, Neural Networks, Cognition

1. Motivation

Being able to understand and intentionally create illusions is currently 
only possible for humans. The ability to accurately recognize illusory patterns 
using a computer, and to generate novel illusion images, would represent a huge 
advancement in computer vision. Current systems are capable of predicting the 
effect of specific classes of illusions, such as color consistency illusions (Robinson, 
Hammon, and Sa, 2007) and length illusions (Garcia-Garibay and Lafuente, 2015; 
Bertulis and Bulatov, 2001). A reinforcement learning system learned to perceive 
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color consistency illusions after training to predict color values where half of the 
image was covered in a tinted film, showing that perception of an illusion can 
emerge from the demands of seeing in a complicated world (Shibata and Kurizaki, 
2012). It is also important to consider whether making a perceptual mistake similar 
to the mistakes of human perception constitutes having a visual experience similar 
to humans (Yampolskiy, 2017). 

Recent work on generative adversarial networks (GANs) (Karras et al., 2017) 
has shown that high resolution images of faces can be created using a large dataset 
of 30,000 images. This quantity and quality of images is not available for optical 
illusions; as discussed below, naively applying their methods to this dataset does not 
have the same results.  

The number of static optical illusion images available are in the low thousands, 
and the number of unique kinds of illusions is certainly very low, perhaps only a 
few dozen (for example, the Scintillating Grid illusion, Cafe Wall Illusion and 
other known categories). Creating a model capable of learning from such a small 
and limited dataset would represent a huge leap in generative models and our 
understanding of human vision.

Figure 1: An illusion image from the dataset. The rings 
are circular and concentric, but the patterns and changes 
in contrast make them appear to be warped. © viperlib.
york.ac.uk
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2. Related Works 

Research into biologically plausible models makes it possible to learn about 
visual phenomenon by conducting experiments on proxies for the real human 
vision system. Elsayed et al. found that by selecting the right models, adversarial 
examples for these models were also effective on time-limited humans (Elsayed et 
al. 2018). In their experiment, they created adversarial images for an ensemble of 
image classification neural networks designed to be similar to human vision. The 
adversarial images cause the machine learning classifier to classify them incorrectly 
by only making subtle changes to the image pixels, and they were testing whether 
these subtle changes would also cause humans to incorrectly classify the altered 
images. To make the neural networks similar to human vision, they preprocessed 
their input images to mimic some aspects of human vision, such as higher resolution 
in the center and lower resolution on the outside. Participants were shown an image 
in one of two classes, for example, an image of a snake or spider. The images were 
only shown for 63 milliseconds, meaning that there was not enough time to look at 
multiple places in the image or reason about its contents on a semantic level. Only 
the first few “layers” of human vision can work in that short a time span. Their 
result was that images with subtle changes that could fool an ensemble of neural 
networks also caused a significant decrease in accuracy for the time-limited humans. 
This means that current models learned using convolutional neural networks are 
internally similar to the simplest parts of human vision, and attacks on these neural 
networks transfer to the visual abilities of time-limited humans. The adversarial 
examples they created constitute a new class of optical illusions, which can fool the 
eye into making a mistake when first glancing at an image.

The Brain-Score metric measures internal and behavioral similarity between 
computer and primate image recognition (Schrimpf et al. 2018). As this metric 
is developed and models with higher scores are created, those models may be 
capable of experiencing additional kinds of optical illusions that are otherwise only 
experienced by primates. 

To our knowledge, no dataset of this kind has been created before. 

3. Data Collection 

3.1. Image Sources 

Twelve different websites that collect and display optical illusions (such as the 
one shown in Figure 1) were considered for inclusion in the dataset. Most proved 
to be too small or did not contain the right content. For instance, the site “Visual 
Phenomena & Optical Illusions” contains many interesting and visually powerful 
demonstrations of optical illusions, but very few still images that by themselves 
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contain a visual effect (“Visual Phenomena & Optical Illusions” 2018). In the 
end, “Mighty Optical Illusions” (Mighty Optical Illusions, 2018) and “ViperLib” 
(Thompson and Stone 2018) proved to be the best sources of illusion images, both 
containing labeled, almost exclusively static images. 

Mighty Optical Illusions is a blog-style website, with pages in chronological order 
labeled as different kinds of illusions and miscellaneous categories. These categories 
are used as training labels for the classification models. Most of the content on the 
site are static images, with only a few animations, meaning most of the data could 
be used.

ViperLib has image pages organized into exclusive categories, but many of them 
are animations which do not create an illusion when viewed as static images.

The “Illusions of the Year” contest also seemed to be a good source of images, but 
they only post the winning results publicly (Neural Correlate Society 2018). Emails 
to the website owner requesting all of the submissions were not answered. 

3.2. Data Collection Results 

We created a web scraper to go through each page of Mighty Optical Illusions 
and download the images on the page (source is available at Williams 2018). In 
total, 6,436 images were obtained, along with their metadata such as categories and 
page titles. ViperLib was scraped in a similar manner, obtaining 1,454 images also 
organized into categories and with page titles. 

Each image from the Mighty Optical Illusions dataset has one or more tags 
describing it. Tags such as “anamorphosis” or “impossible objects” were associated 
with specific kinds of illusory effects, while other tags such as “murals” or “animals” 
describe the medium or contents of the images. To simplify the training of the 
classifier, a folder was created for each tag and all images using that tag were placed 
in its folder. This means that many images were duplicated across categories. In 
the multi-label classification experiment (Section 4.3), images are included in the 
datasets based on having or not having a particular tag, so no duplication occurs.

A subset of the data, referred to in Williams paper (2018) as “illusions-filtered,” 
was selected manually as the highest quality illusion images. These images were 
selected based on having an immediate visual effect without needing any context, 
such as apparent motion illusions. This hand-picked subset of the data represents the 
classes of illusions that can be understood solely based on visual stimuli and seemed 
like the most likely candidates for illusions that a computer could experience, create, 
and discover. With the current state of machine learning, I expected that identifying 
and generating pattern-based illusions, such as motion illusions, would be a much 
easier task than understanding real world objects well enough to identify perspective 
illusions or Escher-like impossible objects.
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3.3. Qualitative Analysis 

To determine the feasibility of learning the dataset, we considered how 
meaningful the classes are and if the images were representative of their class enough 
to be learned. 

The Mighty Optical Illusions dataset was used for the classification experiments 
(in section 4.1) because it had more images and diversity. However, the labels seem 
somewhat arbitrary and are difficult for a human to understand from the images 
alone. Looking at Figure 2, it is not immediately obvious that images in each column 
belong together. 

The first class is “Spot the Object,” where images contain something that is hard 
to find but is easy to see after it’s been pointed out. Classifying whether or not an 
image contains a hidden object is a very difficult task, since some of these illusions 
can require minutes of searching to find the object. This means that to confirm that 
something does not have a hidden object, you would need to search for as long as 
the expected time needed to find a hidden object. The “Impossible Objects” category 
contained images or illustrations of perspective illusions and Escher-like geometries. 
Given a geometric scene, careful spatial reasoning is required to tell if there is 
impossible geometry. There are also images based in perspective illusions, with 
various combinations of clouds, refraction, reflective water, and slanted landscapes 

Figure 2: Images from the dataset. All images in the same column have a 
label in common. Labels are Spot The Object, Impossible Objects, Color 
Adapting, Multiple Meanings, Relative Sizes, Seemingly Bent, Escher Style, 

and Anamorphosis, from left to right.
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that create impossible seeming scenes. “Color Adapting” refers to the eye’s ability 
to adapt to changes in lighting and illusions that are created by taking advantage of 
this ability, but this category includes a wider variety of images, and it seems that 
anything color related received this tag. The “Multiple Meanings” category contains 
images which have more than one appearance depending on how you look at them. 
Some are very subtle, so this category is difficult for the same reason as finding a 
hidden object. It overlaps heavily with “Impossible Objects,” since many impossible 
objects appear as being two thing simultaneously which cannot exist at the same 
time. 

“Relative Sizes” contains familiar objects in contexts that make them seem far 
larger or smaller than they really are. A mismatch between the apparent size of 
an object in an image and your commonsense knowledge about the actual size of 
objects is easy for humans to identify, but it seems like a task that would be very 
difficult for a neural network to learn without being specifically designed for this 
task. The category “Seemingly Bent” contains a large amount of illusions that are 
immediately apparent without additional context or knowledge, so I expected this 
category to be one of the easiest to identify with machine learning. “Escher Style” 
is the same as “Impossible Objects” but limited to impossible geometries and often 
the images are in the pencil-sketch style of Escher’s artworks. “Anamorphosis” 
refers to images where viewing them with a specific perspective or lens changes 
their appearance. For instance, images of sculptures which produce an image when 
a cylindrical mirror is placed in the center and images that appear different when 
viewed up close or far away.

Within each class, many of the images do not contain illusions or are only meant 
as references. For instance, in many “Spot the Object” illusions, a second image with 
the hidden objects highlighted or circled is provided. How to make use of these 
images in a machine learning model is unclear. Many “Impossible Object” images 
also include images of how the object was constructed, none of which contain an 
actual illusion. 

Many confounding factors make using this dataset in a traditional machine 
learning workflow difficult. This difficulty distracts from the key question: can 
machines perceive optical illusions as humans do? Expensive hand-sorting of the 
data could solve this problem, by isolating exactly the images of interest and putting 
them in consistent and meaningful classes of illusions. Illusions of restricted kinds 
could be automatically generated, such as variations on motion illusions based on 
known patterns. Overall, the dataset contains a large portion of images which clearly 
demonstrate illusions, but many non-illusions are present which makes learning 
difficult.
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4. Machine Learning Results 

Three different kinds of models were tested on subsets of the data. Two classifiers 
were trained to test how visually distinguishable the given classes are, and a generative 
model was trained to see if new instances of known illusions could be created by 
naively applying existing methods for image generation. 

4.1. Single-label Classifier Results 

A pretrained “bottleneck” model (TensorFlow 2018) was used to classify images 
from Mighty Optical Illusions. Only the last few layers had to be retrained, making 
use of transfer learning from a much larger dataset to learn how to classify images 
in general. In this case, the pre-trained model was “Inception v3”, trained on over 
14 million images in the ImageNet dataset. The pre-trained model converts the 
very high dimensional image data into a lower dimensional “feature space” vector. 
This means that the image, a vector of around two hundred thousand values, is 
compressed into a vector of around two thousand value which contain enough 
information to accurately classify an image. 

Learning new image classes from this feature space representation requires 
significantly less data and computation time, meaning that these experiments can 
be run on a normal PC in a few minutes, instead of the days or weeks on a GPU that 
was required to train the original Inception v3 model. 

Each image in the training data may belong to multiple classes, which was not 
accounted for in the model. In Section 4.3, a multi-label classifier was created for a 
different subset of the data. The results of training can be seen in Figure 3. 

Figure 3: Confusion matrix for a classifier trained on the Mighty Optical 
Illusions data. 
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The model performed significantly better than random, meaning that the given 
classes are meaningful in a way that can be detected using a model trained on 
normal classes of images. Out of the 21 classes, most classes were predicted with 40-
60% accuracy. The very poor accuracy on news, multiple meanings, and art illusions 
is explained by the lack of defining features for these classes. For example, the “art 
illusions” category overlaps evenly with most other categories. 

An interpretation study could reveal more about how the neural network is able 
to distinguish these classes, such as the methods used in Zhang, Wu, and Zhu (2017) 
that show which areas of the image are important to classification and what the key 
features of each class are. 

4.2. Generative Adversarial Network 

A trial run using a generative adversarial network was attempted. Using 
HyperGAN (Martyn, 2017) on a hand-picked subset of the data with no 
hyperparameter optimization, nothing of value was created after 7 hours of training 
on an Nvidia Tesla K80. The training progression is shown in Figure 4. 

When trained with homogeneous data (such as only using images of faces), 
GANs are able to create varied and convincing imagery. However, when applied to a 
varied, multimodal dataset, performance degrades and the generator only learns to 
generate a single type of image, a problem known as mode collapse (Barnett 2018). 

The output produced by the GAN subjectively resembles some sort of scene or 
objects. It has learned many underlying patterns in the dataset, such as high contrast 
edges, varied shading, and spatially confined objects. On a small-scale visual level, 
the generated images appear to be a plausible photographic scene. However, on a 
larger scale it fails to recreate anything resembling the images in the dataset. 

The GAN could be pretrained on a larger dataset to overcome the issue of having 
such a small dataset. Dataset expansion techniques, such as rotating, cropping, and 
scaling images, could also be applied to increase the amount of data available for 
training. The GAN was run with default parameters, which are likely far from ideal 
for this dataset. Tweaking the parameters to better suit the specifics of this dataset 
may prevent mode collapse and increase the quality of training. 
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4.3. Multi-label Classifier

In multi-label classification, each image can be in more than one class, and 
the classifier outputs true or false for each label. Most of the images in the Mighty 
Optical Illusions dataset have more than one label, so this technique is appropriate 
for the dataset.

4.3.1. Model

For this experiment, ResNet50 with pre-trained weights was used (Simonyan et 
al. 2015). The final classification layers were removed and replaced with a densely 
connected layer with ReLU activations and a prediction layer with sigmoid activation 
on a single output. This is the same bottleneck training technique used in Section 
4.1. An instance of this model was created for each of the target classes and trained 
separately. To obtain a vector representing all of the labels, the output of all of the 
models is concatenated together.

 Figure 4: Failure of GAN to generate imagery similar to the dataset. 
Top to bottom is the progression from start to finish. Images in the 
same row are from the same training step but with different random 
input vectors (Goodfellow et al., 2014). The lack of variety is abnormal 
and may lead to insights into how to correct the problem.
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4.3.2. Data 

Labels that occur less than 70 times in the dataset were removed, as well as labels 
that do not indicate the content of the illusions, such as “Animals” or “Murals.” Only 
8 of the 42 labels met these specifications: Spot The Object, Impossible Objects, 
Color Adapting, Multiple Meanings, Relative Sizes, Seemingly Bent, Escher Style, 
and Anamorphosis. In an initial testing run, images with none of these labels were 
left in the dataset to provide negative samples. This leaves a large majority of the 
images with no label, meaning that a model that always predicts 0’s for each class 
will be largely accurate, and the model failed to learn to classify on any of the labels 
significantly better than random. To better evaluate the model, the data was made 
into even splits for each label: 50% images which have the label the model is being 
trained on, and 50% with any other label. For example, the split for “Color Adapting” 
would consist of 50% images that have the “Color Adapting” label (and possible 
other labels) and the other 50% would consist of images randomly sampled from the 
rest of the dataset, contained any label except “Color Adapting”. This is repeated for 
every label. Another similar dataset was made, but with a third category of images 
with no labels to provide negative examples. In that dataset, the data for each label 
was split with 50% having the label the model is being trained on, 25% having any 
other labels, and 25% with no labels at all. 

4.3.3. Results

The model trained on the original, biased data only learned to predict false for 
every label and fit some of the training data. The models trained on balanced data, 
however, were able to generalize to the held-out validation set with some success. 
The validation accuracies for the two models trained on balanced data are shown 
in Figure 5. Both models failed to learn some classes, and scored very well on some 
labels, such as Color Adapting. Inspecting images in each class shows that there are 
many surface characteristics, such as the high contrast shapes in Color Adapting, 
that make it easy to recognize the label without being able to identify the presence 
of a color adapting illusion. This dataset allows the model to “cheat” and identify 
illusions by the way they are presented instead of imitating the human visual system 
and identifying them as illusions. A means to deactivate illusions without changing 
surface characteristics would enable a more rigorous test of the model. For instance, 
in “Skye’s Oblique Grating,” if the odd check marks are not rotated 90 degrees 
from the even check marks, the illusion disappears. A model that memorized the 
appearance of the Skye’s Oblique Grating might miscategorize the deactivated 
version as being an illusion.
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5. Conclusion and Future Work 

The only optical illusions known to humans have either been created by evolution 
(for instance, eye patterns in butterfly wings) or by human artists. Both artistic 
designers of illusion images and the glacial process of evolution have access to active 
vision systems to verify their work against. An illusion artist can make an attempt at 
creating an illusion, observe its effect on their own eyes, and add or remove elements 
to try to create a more powerful illusion. In an evolutionary process, every agent 
has a physical appearance and a vision system, allowing for patterns to be verified 
in their environment constantly. A GAN trained on existing illusions would have 
none of these advantages, and it seems unlikely that it could learn to trick human 
vision without being able to understand the principles behind the illusions. Because 
of these limitations, it seems that a dataset of illusion images might not be sufficient 
to create new illusions and a deeper understanding of human vision would need to 
be obtained by the network somehow. This could be done by having a human giving 
feedback as the network learned, or by learning an accurate proxy for human vision 
and trying to deceive the proxy as in Elsayed et al. (2018).

Figure 5: Black bars are single class validation accuracy for the model 
trained on data split between having that label and not having that label 
but having a different label. Striped bars are accuracy for the model 
trained on data split between having that label, having any other label, 
and having no label. The horizontal line shows the baseline accuracy for 
a model that always guesses the most likely class, 50%.
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Appendix A. 

Downloading the Dataset Images are currently hosted on the machine learning cloud 
platform “Floydhub.” 

•	 	https://www.floydhub.com/robertmax/datasets/illusions-jpg 
•	 	This contains all images that were downloaded, using the same numbering scheme 

as the metadata on the linked github repository. 
•	 	https://www.floydhub.com/robertmax/datasets/illusions-filtered 
•	 	This folder contains images hand picked for having obvious visual effects without 

having to follow special instructions.
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